Fast Navigation

Contact Us

Chang-jun Liu, Professor, FRSC
Tel:+86 22 27406490
Fax:+86 22 27406490

Email:coronacj@tju.edu.cn

 

Address:
Tianjin University – Nankai University Union Building, B–502,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin),School of Chemical Engineering & Technology, Tianjin University


Mailing address:
P.O. Box 796666, Tianjin University
92 Weijin Road, Tianjin, China, 300072

Publications

2017

1. Sheng Sui, Xiaoying Wang, Xintong Zhou, Yuehong Su, Saffa B Riffat and Chang-jun Liu, A comprehensive review of Pt electrocatalysts for oxygen reduction reaction: nanostructure, activity, mechanism and carbon support in PEM fuel cells, Journal of Materials Chemistry A, 5, 1808-1825, 2017

 

2. Zhuorong Li, Jiao Meng, Wei Wang, Zongyuan Wang, Minyue Li, Tao Chen, Chang-Jun Liu, The Room Temperature Electron Reduction for the Preparation of Silver Nanoparticles on Cotton with High Antimicrobial Activity, Carbohydrate Polymers, 161, 270–276, 2017

 

3. Min Fang, Zong-Yuan Wang, Chang-Jun Liu,Characterization and Application of Au Nanoparticle/Agarose Composite Film Fabricated by Room Temperature Electron Reduction, Acta Phys.-Chim. Sin.33(2), 435-440, 2017.

 

4. Wei Wang, Zongyuan Wang, Jiajun Wang, Chuan-Jian Zhong and Chang-Jun Liu, Highly active and stable Pt-Pd alloy catalysts synthesized by room temperature electron reduction for oxygen reduction reaction, Advanced Science, 4(4), 1600486, 2017

 

5. Xinxiang Cao, Rui Zhou, Ning Rui, Zongyuan Wang, Jiajun Wang, Xintong Zhou, Chang-jun Liu, Co3O4/HZSM-5 catalysts for methane combustion: The effect of preparation methodologies, Catalysis Today, DOI: 10.1016/j.cattod.2017.01.042

 

6. Wei Wang, Caleb Anderson, Zongyuan Wang, Wei Wu, Honggang Cui, Chang-Jun Liu, Peptide-Templated Noble Metal Catalysts: Syntheses and Applications, Chemical Science, 8, 3310-3324, 2017

 

7. Zhou-jun Wang, Ben W.-L. Jang, Chang-jun Liu, Recent Advances in Plasma Catalysis (ISPCEM 2016), Topics in Catalysis, 60(12-14), 797-798, 2017

 

8. Xintong Zhou, Chang-jun Liu, Three-dimensional Printing for Catalytic Applications: Current Status and Perspectives, Advanced Functional Meaterials, 27(30), 1701134, 2017

 

9. Chang-jun Liu,How do you explain the importance of CO2 utilization? Greenhouse Gases: Science and Technology, 7 (3) , 397–398, 2017

 

10.Jonathan Cole, Yao Zhang, Tianqi Liu, Chang-jun Liu, R Mohan Sankaran. Process scale-up considerations for non-thermal atmospheric-pressure plasma synthesis of nanoparticles by homogenous nucleation, Journal of Physics D: Applied Physics, 50, 304001, 2017

 

11.Ning Rui, Zongyuan Wang, Kaihang Sun, Jingyun Ye, Qingfeng Ge, Chang-jun Liu. CO2 hydrogenation to methanol over Pd/In2O3: effects of Pd and oxygen vacancy, Applied Catalysis B: Environmental, 218, 488–497, 2017

 

2016

1. Wei Wang, Yao Zhang, Zongyuan Wang, Jinmao Yan, Qingfeng Ge, Chang-jun Liu, Revers Water Gas Shift over In2O3/CeO2 Catalysts, Catalysis Today, 259, 402–408, 2016

 

2. Zongyuan Wang, Minyue Li, Wei Wang, Min Fang, Qidi Sun, Changjun Liu, Floating silver film: A flexible SERS substrate for direct liquid phase detection at gas–liquid interface, Nano Research, 9(4), 1148–1158, 2016

 

3. Chang-jun Liu, Minyue Li, Jiaqi Wang, Xintong Zhou, Qiuting Guo, Jinmao Yan, Yingzhi Li, Cold plasma applications for green catalyst preparation: current status and perspective, Chinese Journal of Catalysis, 37 (3), 340–348, 2016 (in the list of Most Downloaded Articles)

 

4. Yueping Zhang, You Zhou, Yue Zhao, Chang-jun Liu, Recent Progresses in the Size and Structure Control of MOF Supported Noble Metal Catalysts, Catalysis Today, 263, 61–68, 2016 (in the list of Most Downloaded Articles)

 

5. Wei Wang, Zongyuan Wang, Manman Yang, Chuan-Jian Zhong, Chang-Jun Liu, Highly active and stable Pt (111) catalysts synthesized by peptide Assisted room temperature electron reduction for oxygen reduction reaction, Nano Energy, 25, 26–33, 2016

 

6. Minyue Li, Qidi Sun and Chang-jun Liu, Preparation of Floating Au/PVP Film on Water for a Green and Rapid Extraction of Gold Ion, ACS Sustainable Chemistry & Engineering, 4, 3255−3260, 2016

 

7. Rui Zhou, Ning Rui, Zhigang Fan, Chang-jun Liu, Effect of the structure of Ni/TiO2 catalyst on CO2methanation, International Journal of Hydrogen Energy, 41(47), 22017–22025, 2016

 

8. Jiajun Wang, Wei Wang, Zongyuan Wang, Jingguang Chen, and Chang-jun Liu, Porous MS2/MO2 (M = W, Mo) Nanorods as Efficient Hydrogen Evolution Reaction Catalysts, ACS Catalysis, 6, 6585–6590, 2016(in the list of Most Read Articles of Oct. 2016)

 

2015

1. Zongyuan Wang, Chang-jun Liu, Preparation and Application of Iron Oixde/Graphene Based Composites for Electrochemical Energy Storage and Energy Conversion: Current Status and Perspective, Nano Energy, 11, 277-293, 2015(in the list of Most Downloaded Articles in January, February, March and April 2015)

 

2. You Zhou, Zongyuan Wang, Chang-jun Liu, Perspective on CO oxidation over Pd-based catalysts, Catalysis Science & Technology, 2015,5, 69-81(in the list of Most Downloaded Articles in November, 2014 and January, 2015)

 

3. Yao Zhang, Wei Wang, Zongyuan Wang, Xintong Zhou, Zhao Wang, Chang-jun Liu, Steam Reforming of Methane over Ni/SiO2 catalyst with Enhanced Coke Resistance at Low Steam to Methane Ratio, Catalysis Today, 256, 130-136, 2015

 

4. Yuan Liu, Zhao Wang, Chang-jun Liu, Mechanism of Template Removal for the Synthesis of Molecular Sieves Using Dielectric Barrier Discharge, Catalysis Today, 256, 137–141, 2015

 

5. Jingyun Ye, Qingfeng Ge, and Chang-jun Liu, Effect of PdIn Bimetallic Particle Formation on CO2 Reduction over the Pd-In/SiO2 Catalyst, Chemical Engineering Science, 135, 193-201, 2015

 

6. Hong Chen, XinliJia, Yongdan Li, Changjun Liu, Yanhui Yang, Controlled surface properties of Au/ZSM5 catalysts and their effects in the selective oxidation of ethanol, Catalysis Today, 256, 153–160, 2015

 

7. Kaihang Sun, Zhigang Fan, Jingyun Ye, Jinmao Yan, Qingfeng Ge, Yanan Li, Wenjun He, Weimin Yang, Chang-jun Liu, Hydrogenation of CO2 to methanol over In2O3 catalyst,Journal of CO2 Utilization, 12, 1-6, 2015

  

8. Zhigang Fan, Kaihang Sun, Ning Rui, Binran Zhao, Chang-jun Liu, Improved activity of Ni/MgAl2O4 for CO2 methanation by the plasma decomposition, Journal of Energy Chemistry, Journal of Energy Chemistry, 24, 655-659, 2015

  

9. Jiajun Wang, Chang-jun Liu, Preparation of 2D WO3 Nanomaterials with Enhanced Catalytic Activities: Current Status and Perspective, ChemBioEng Reviews, 2, 335-350, 2015(in the list of Most Accessed Articles of 08/2016 and 09/2015 to 08/2016)

  

10. Yun-Xiang Pan, Huai-Ping Cong, Yu-Long Men, Sen Xin, Zheng-Qing Sun, Chang-Jun Liu, and Shu-Hong Yu, Peptide Self-Assembled Biofilm with Unique Electron Transfer Flexibility for Highly Efficient Visible-Light-Driven Photocatalysis, ACS Nano, 9 (11), 11258–11265, 2015

  

2014

1. Manman Yang, Zongyuan Wang, Wei Wang, Chang-jun Liu, Synthesis of AuPd alloyed nanoparticles via room-temperature electron reduction with argon glow discharge as electron source, Nanoscale Research Letters, 9:405, 2014

 

2. Zongyuan Wang, Jiajun Wang, Minyue Li, Kaihang Sun, Chang-jun Liu,  Three-dimensional Printed Acrylonitrile Butadiene Styrene Framework Coated with Cu-BTC Metal-organic Frameworks for the Removal of Methylene Blue, Scientific Reports, 4, 5939, 2014

 

3. Jiajun Wang, Zongyuan Wang, Chang-jun Liu,  Enhanced Activity for CO Oxidation over WO3 Nanolamella Supported Pt Catalyst. ACS Applied Materials & Interfaces, 6, 12860-12867, 2014

 

4. Jingyun Ye, Chang-jun Liu, Donghai Mei, Qingfeng Ge,  Methanol synthesis from CO2 hydrogenation over a Pd4/In2O3 model catalyst: A combined DFT and kinetic study. Journal of Catalysis 317, 44–53, 2014(in the list of Most Downloaded Articles in October and November, 2014)

 

5. Chang-jun Liu, Yue Zhao, Yingzhi Li, Da-shuai Zhang, Ze Chang, Xian-he Bu, Perspectives on Electron Assisted Reduction for the Preparation of Highly Dispersed Noble Metal Catalysts, ACS Sustainable Chemistry & Engineering, 2(1), 3-13, 2014 (in the list of Most Read Articles in December, 2013)

 

6. Qidi Sun, Jingyun Ye, Chang-jun Liu, Qingfeng Ge, In2O3 as a Promising Catalyst for CO2 Utilization: A Case Study with Reverse Water Gas Shift over In2O3, Greenhouse Gases: Science & Technology, 4(1):140–144, 2014

 

7. You Zhou, Zhonghua Xiang, Dapeng Cao, Chang-jun Liu, Preparation and Characterization of Covalent Organic Polymer Supported Paladium Catalysts for Oxidation of CO and

Benzyl Alcohol, Industrial & Engineering Chemistry Research, 53(4), 1359–1367, 2014

 

8. Xintong Zhou, Quan Zhang, Chang-jun Liu,Templated synthesis of urchin-like zinc oxide particles by micro-combustion, Frontiers of Chemical Science & Engineering, 8(1), 73–78, 2014

 

9. Wei Wang, Manman Yang, Zongyuan Wang, Jinmao Yan, Chang-jun Liu, Silver Nanoparticle Aggregates by room temperature electron reduction: preparation and characterization, RSC Advances, 2014, 4, 63079-63084  

 

2013

1. Xiaoliang Yan, Chang-jun Liu, Effect of the Catalyst Structure on the Formation of Carbon Nanotubes over Ni/MgO Catalyst, Diamond and Related Materials, 31, 50–57, 2013 (once in the list most downloaded papers)

 

2. Xiaoliang Yan, Yuan Liu, Binran Zhao, Zhao Wang, Yong Wang, Chang-jun Liu, Methanation over Ni/SiO2: Effect of the catalyst preparation methodologies, International Journal of Hydrogen Energy, 38(5), 2283-2291, 2013  

 

3. You Zhou, Zhonghua Xiang, Dapeng Cao, and Chang-Jun Liu, Covalent Organic Polymer Supported Palladium Catalyst for CO Oxidation, Chemical Communications, 2013, 49, 5633-5635  

 

4. Qiuting Guo, Patrick With, Yuan Liu, Roger Gläser and Chang-jun Liu, Carbon Template Removal by Dielectric-Barrier Discharge Plasma for the Preparation of Zirconia, Catalysis Today, 211, 156–161, 2013  

 

5. Xiaoliang Yan, Yuan Liu, Binran Zhao, Yong Wang and Chang-jun Liu, Enhanced sulfur resistance of Ni/SiO2 catalyst for methanation via the plasma decomposition of nickel precursor, Phys. Chem. Chem. Phys., 15(29), 12132-12138, 2013  

 

6. Yue Zhao, Chongli Zhong and Chang-Jun Liu, Enhanced CO oxidation over thermal treated Ag/Cu-BTC, Catalysis Communications, 38, 74-76, 2013  

 

7. Jingyun Ye, Chang-jun Liu, Donghai Mei, Qingfeng Ge, Active Oxygen Vacancy Site for Methanol Synthesis from CO2 Hydrogenation on In2O3(110): A DFT Study. ACS Catalysis, 3(6),1296-1306, 2013

 

8. Binran Zhao, Xiaoliang Yan, You Zhou, Chang-jun Liu, Effect of Catalyst Structure on Growth and Reactivity of Carbon Nanofibers over Ni/MgAl2O4, Industrial & Engineering Chemistry Research, 52 (24), 8182–8188, 2013  

 

9. Chunmei Zhou, Hong Chen, Yibo Yan, Xinli Jia, Chang-jun Liu, Yanhui Yang, Argon plasma reduced Pt nanocatalysts supported on carbon nanotube for aqueous phase benzyl alcohol oxidation, Catalysis Today, 211, 104–108, 2013

 

10. Jinmao Yan, Yunxiang Pan, Andrew G. Cheetham, Yi-An Lin, Wei Wang, Honggang Cui, Chang-Jun Liu, One-Step Fabrication of Self-assembled Peptide Thin Films with Highly Dispersed Noble Metal Nanoparticles, Langmuir, 29(52), 16051-16057, 2013 (in the TOP 5 Most Read Articles of the journal in January, 2014)

 

2012

1. Qi-di Sun, Bin Yu, Chang-jun Liu, Characterization of ZnO Nanotube Fabricated by the Plasma Decomposition of Zn(OH)2 via Dielectric Barrier Discharge, Plasma Chemistry Plasma Processing, 32(2), 201-209, 2012  

 

2. Xueyan Guo, Yanli Sun, Yue Yu, Xinli Zhu and Chang-jun Liu, Carbon Formation and Steam Reforming of Methane on Silica Supported Nickel Catalysts, Catalysis Communications, 19, 61–65, 2012

 

3. Yongbing Xie, Zhehao Wei, Chang-jun Liu, Lan Cui and Chao Wang, Morphologic Evolution of Au Nanocrystals Grown in Ionic Liquid by Plasma Reduction, Journal of Colloid & Interface Science, 374(1), 40–44, 2012  

 

4. Chunmei Zhou, Xin Wang, Xinli Jia, Houpeng Wang, Chang-jun Liu, Yanhui Yang, Nanoporous platinum grown on nickel foam by facile plasma reduction with enhanced electro-catalytic performance, Electrochemistry Communications, 18, 33–36,2012  

 

5. Yuanting Chen; Houpeng Wang; Chang-jun Liu; Zhiyuan Zeng; Hua Zhang; Chunmei Zhou; Xinli Jia; Yanhui Yang, Formation of monometallic Au, Pd and bimetallic Au-Pd nanoparticles confined in mesopores via Ar glow discharge plasma reduction and their catalytic applications in aerobic oxidation of benzyl alcohol, Journal of Catalysis, 289, 105-117, 2012  

 

6. Yue Yu, Yingzhi Li, Yunxiang Pan and Chang-jun Liu, Fabrication of palladium/graphene oxide composite by plasma reduction at room temperature, Nanoscale Research Letters 7:234, 2012

 

7. Jingyun Ye, Changjun Liu, and Qingfeng Ge, DFT Study of CO2 Adsorption and Hydrogenation on the In2O3 Surface, J. Phys. Chem. C, 116 (14), 7817–7825, 2012  

 

8. Chang-jun Liu, Do we have a rapid solution for CO2 utilization? A perspective from China, Greenhouse Gases: Science and Technology, 2(2), 75-76, 2012  

 

9. Binran Zhao, Yun-xiang Pan and Chang-jun Liu, The Promotion Effect of CeO2 on CO2 Adsorption and Hydrogenation over Ga2O3, Catalysis Today, 194(1), 60–64, 2012  

 

10. Wael Mamdouh, Yingzhi Li, Sherif M. Shawky, Hassan M. E. Azzazy and Chang-Jun Liu, Influence of “Glow Discharge Plasma” as an External Stimulus on the Self-Assembly, Morphology and Binding Affinity of Gold Nanoparticle-Streptavidin Conjugates, International Journal of Molecular Sciences, 13(6), 6534-6547, 2012  

 

11. Yingzhi Li, Yue Yu, Jian-guo Wang, Jie Song, Qiang Li, Mingdong Dong and Chang-jun Liu, CO Oxidation over Graphene Supported Palladium Catalyst, Applied Catalysis B: Environmental, 125, 189-196, 2012  (in the Most Downloaded Papers in September, 2012)

 

12. Yun-xiang Pan, Chang-jun Liu, Shuai Zhang, Yue Yu and Mingdong Dong, 2D Oriented Self-Assembly of Peptide Induced by Hydrated Electrons, Chemistry-A European Journal, 18 (46), 14614–14617, 2012  

 

13. Jingyun Ye, Changjun Liu and Qingfeng Ge, A DFT study of methanol dehydrogenation on the PdIn(110) surface, Phys. Chem. Chem. Phys., 14, 16660-16667, 2012

 

2011

1. Zhehao Wei, Chang-jun Liu, Synthesis of Monodisperse Gold Nanoparticles in Ionic Liquid by Applying Room Temperature Plasma, Materials Letters, 65(2), 353–355, 2011  

 

2. Chang-jun Liu, Jingyun Ye, Jiaojun Jiang and Yunxiang Pan, Progresses in the Preparation of Coke Resistant Ni-based Catalyst for Steam and CO2 Reforming of Methane, ChemCatChem, 3(3), 529–541, 2011 (in the 9th of the 25 Most Cited Articles published in the journal in 2011 and 2012)

 

3. Jing-yun Ye and Chang-jun Liu, Cu3(BTC)2: CO oxidation over MOF based catalysts, Chemical Communications, 47(7), 2167-2169, 2011  

 

4. You Zhou, Chang-jun Liu, Amorphization of metal-organic framework MOF-5 by electrical discharge, Plasma Chemistry Plasma Processing, 31(3), 499-506, 2011  

 

5. De Chen and Chang-Jun Liu, A Current Perspective on Catalysis for New Energy Technologies ChemCatChem, 3(3), 423–425, 2011  

 

6. Yun-xiang Pan, Donghai Mei, Chang-jun Liu, and Qingfeng Ge, Hydrogen Adsorption on Ga2O3 Surface: A Combined Experimental and Computational Study, J. Phys. Chem. C, 115 (20), 10140–10146, 2011  

 

7. Houpeng Wang and Chang-jun Liu, Preparation and Characterization of SBA-15 supported Pd catalyst for CO oxidation, Applied Catalysis B: Environmental 106, 672– 680, 2011
 

2010

1. Ji-Jun Zou and Chang-jun Liu, Utilization of Carbon Dioxide through Nonthermal Plasma Approaches, in Carbon Dioxide as Chemical Feedstock, ed. Michele Aresta, pp.267-290, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2010

 

2. Xi Liang, Zhou-jun Wang, Chang-jun Liu, Size-Controlled Synthesis of Colloidal Gold Nanoparticles at Room Temperature Under the Influence of Glow Discharge, Nanoscale Research Letters, 5(1), 124-129, 2010  

 

3. Ben W.-L. Jang, Roger Glaeser, Mingdong Dong, Chang-Jun Liu, Fuels of the future, ENERGY & ENVIRONMENTAL SCIENCE, 3(3), 253-253, 2010

 

4. Yuan Liu, Yunxiang Pan, Zhou-Jun Wang, Pingyu Kuai, Chang-Jun Liu, Facile and fast template removal from mesoporous MCM-41 molecular sieve using dielectric-barrier discharge plasma, Catalysis Communications, 11(6), 551-554, 2010  

 

5. Yuan Liu, Yun-xiang Pan, Pingyu Kuai and Chang-jun Liu, Template Removal from ZSM-5 Zeolite Using Dielectric-Barrier Discharge Plasma, Catalysis Letters, 135(3/4), 241-245, 2010

 

6. Yunxiang Pan; Chang-jun Liu; Qingfeng Ge, Effect of Surface Hydroxyls on Selective CO2 Hydrogenation over Ni4/γ-Al2O3: A Density Functional Theory Study, Journal of Catalysis, 272 (2), 227-234, 2010

 

7. Yun-xiang Pan, Chang-jun Liu, Donghai Mei , Qinfeng Ge, Effects of Hydration and Oxygen Vacancy on CO2 Adsorption and Activation on beta-Ga2O3(100), Langmuir, 26(8), 5551-5558, 2010

 

8. Chen KangCheng, Pan YunXiang and Liu Chang-Jun. Effect of reduction method on the performance of Pd catalysts supported on activated carbon for the selective oxidation of glucose. Science China:Chemistry. 53(7), 1598–1602, 2010

 

9. Pan, Y.X.; Kuai, P.Y.; Liu, Y.; Ge, Q.F.; Liu, C.-J. Promotion effects of Ga2O3 on CO2 adsorption and conversion over a SiO2-supported Ni catalyst. Energy Environ. Sci. 2010, 3, 1322-1325.  

 

10. Chang-jun Liu, Uwe Burghaus, Flemming Besenbacher, and Zhong Lin Wang, Preparation and Characterization of Nanomaterials for Sustainable Energy Production, ACS Nano, 4(10), 5517–5526, 2010 ( in the list of Most Read articles in December, 2010)  

 

11. Chang-jun Liu, Peng Shi, Jiaojun Jiang, Pingyu Kuai, Xinli Zhu,Yunxiang Pan and Yueping Zhang, Development of Coke Resistant Ni Catalysts for CO2 Reforming of Methane via Glow Discharge Plasma Treatment, in Advances in CO2 Conversion and Utilization, ACS Symposium Series 1056, Chapter 11, 175-180, 2010.

 

2009

1. Yan Li, Pingyu Kuai, Peipei Huo and Chang-jun Liu, Fabrication of CuO Nanofibers via the Plasma Decomposition of Cu(OH)2, Mater. Lett., 63(2),188-190,2009

 

2. Zhao Wang, Chang-Jun Liu, Guoliang Zhang. Size Control of Carbon Black-Supported Platinum Nanoparticles via Novel Plasma Reduction. Catalysis Communications, 10, 959-962, 2009

 

3. Zhou-jun Wang, Yuan Liu, Peng Shi, Chang-jun Liu, Yan Liu. Al-MCM-41 supported palladium catalyst for methane combustion: Effect of the preparation methodologies. Appl. Catal. B, 90(3-4), 570-577,2009

 

4. Yun-xiang Pan, Chang-jun Liu, Tomasz S. Wiltowski, Qingfeng Ge, CO2 adsorption and activation over γ-Al2O3-supported transition metal dimers: A density functional study, Catalysis Today, 147(2), 68-76, 2009  

 

5. You Han, Chang-jun Liu, Qingfeng Ge. Effect of Pt Clusters on Methanol Adsorption and Dissociation over Perfect and Defective Anatase TiO2(101) Surface. J. Phys. Chem. C, 113 (48), 20674–20682, 2009

 

2008

1. Yong-Bing Xie, Chang-Jun Liu, Stability and Application of Ionic Liquids under the Influence of Glow Discharge Plasmas, Plasma Processes and Polymer, 5(3), 239-245, 2008  

 

2. Xinli Zhu, Yongbing Xie, Chang-jun Liu, Yue-ping Zhang, Stability of Pt particles on ZrO2 support during partial oxidation of methane: DRIFT studies of adsorbed CO, J. Mol. Catal. A, 282(1/2), 67-73, 2008

 

3. Xinli Zhu, Peipei Huo, Yue-ping Zhang, Dang-guo Cheng and Chang-jun Liu,Structure and reactivity of plasma treated Ni/Al2O3 catalyst for CO2 reforming of methane, Appl. Catal. B, 81(1-2), 132-140, 2008 (once in the list most downloaded papers)  

 

4. Yu Zhao, Yun-xiang Pan, Yongbing Xie and Chang-jun Liu. Carbon Dioxide Reforming of Methane over Glow Discharge Plasma Reduced Ir/Al2O3 catalyst. Catalysis Communications, 9, 1558-1562, 2008

 

5. Xinli Zhu, Kailu Yu, Dangguo Cheng, Yueping Zhang, Qing Xia, Changjun Liu. Modification of acidity of Mo-Fe/HZSM-5 zeolite via argon plasma treatment. Front. Chem. Eng. China, 2(1), 55-58, 2008

 

6. Yun-Xiang Pan, Chang-Jun Liu, Peng Shi, Preparation and Characterization of Coke Resistant Ni/SiO2 Catalyst for Carbon Dioxide Reforming of Methane, Journal of Power Sources, 176(1), 46-53, 2008

 

7. Yun-xiang Pan, Chang-jun Liu, Lan Cui, Temperature-programmed Studies of Coke Resistant Ni Catalyst for Carbon Dioxide Reforming of Methane, Catal. Lett., 123(1-2), 96-101, 2008

 

8. Xinli Zhu, Dangguo Cheng and Pingyu Kuai, Catalytic decomposition of methane over Ni/Al2O3 catalysts: Effect of plasma treatment on carbon formation, Energy & Fuels, 22(3), 1480-1484, 2008

 

9. Yun-xiang Pan, Chang-jun Liu, Peng Shi, The cleavage of the methane C-H bond over PdO/H-BEA: A density functional theory study, Applied Surface Science, 254 (17), 5587-5593, 2008

 

10. Ya-nan Li, Yong-bing Xie and Chang-jun Liu, Enhanced activity of bimetallic Pd-based catalysts for methane combustion, Catal. Lett., 125(1-2), 130-133, 2008 Yun-xiang Pan, Chang-jun Liu, Qingfeng Ge, Adsorption and Protonation of CO2 on Partially Hydroxylated γ-Al2O3 Surfaces: A Density Functional Theory Study, Langmuir, 24(21), 12410-12419, 2008

 

11. Xi Liang, Chang-jun Liu and Pingyu Kuai, Selective oxidation of glucose to gluconic acid over argon plasma reduced Pd/Al2O3, Green Chemistry,10(12),1318-1322, 2008

 

12. Zhou-jun Wang, Yongbing Xie, Chang-jun Liu, Synthesis and Characterization of Noble Metal (Pd, Pt, Au, Ag) Nanostructured Materials Confined in the Channels of Mesoporous SBA-15, Journal of Physical Chemistry C, 112 (50), 19818–19824, 2008

 

2007

1. Yun-Xiang Pan, You Han and Chang-Jun Liu, Pathways for Steam Reforming of Dimethyl Ether under Cold Plasma Conditions: A DFT Study, Fuel, 86, 2300-2307, 2007

 

2. Ji-Jun Zou, Yue-ping Zhang and Chang-Jun Liu, Hydrogen Production from Partial Oxidation of Dimethyl Ether Using Corona Discharge Plasma, Intern. J. Hydrogen Energy, 32, 958-964, 2007

 

3. Ji-Jun Zou, Yue-ping Zhang, Chang-Jun Liu, Hydrogen production from dimethyl ether using corona discharge plasma, Journal of Power Sources, 163, 653-657, 2007

 

4. Yu Zhao, Yun-xiang Pan, Lan Cui and Chang-jun Liu, Carbon nanotubes formation over plasma reduced Pd/HZSM-5, Diamond and Related Materials, 16, 229-235, 2007

 

5. Yun-xiang Pan and Chang-jun Liu, DFT study on pathways of partial oxidation of DME under cold plasma conditions, Fuel Processing Technology, 88, 967-976, 2007

 

6. Zhou-jun Wang, Yu Zhao, Lan Cui, Haiyan Du, Pei Yao and Chang-jun Liu, CO2 reforming of methane over argon plasma reduced Rh/Al2O3 catalyst: A case study of alternative catalyst reduction via non-hydrogen plasmas, Green Chemistry, 2007, 9, 554-559

 

7. Dangguo Cheng, Kazu Okumura, Yongbin Xie and Chang-jun Liu, Stability Test and EXAFS Characterization of Plasma Prepared Pd/HZSM-5 Catalyst for Methane Combustion, Applied Surface Science, 254(5), 1506-1510, 2007  

 

8. Xinli Zhu,Yue-ping Zhang and Chang-jun Liu, CO adsorbed infrared spectroscopy study of Ni/Al2O3 catalyst for CO2 reforming of methane, Catal. Lett., 2007, 118(3/4), 306-312

 

9. Chang-jun Liu, Ben WL Jang, Roger Glaeser, Green chemistry for fuel synthesis and processing Green Chemistry, 9 (6), 525-525, 2007  

 

10. You Han, Chang-jun Liu and Qingfeng Ge, Effect of surface oxygen vacancy on Pt cluster adsorption and growth on the defective anatase TiO2(101) surface, J. Phys. Chem. C., 111(44); 16397-16404, 2007  

 

11. Ji-jun Zou, Fei He, Lan Cui, Hai-yan Du, High efficient Pt/TiO2 photocatalyst for hydrogen generation prepared by a cold plasma method, Intern. J. Hydrogen Energy, 32(12), 1762-1770, 2007

 

12. Yingwei Li, Ralph T. Yang, Chang-jun Liu, Zhao Wang, Hydrogen storage on carbon doped with platinum nanoparticles using plasma reduction, Ind. Eng. Chem. Res., 46(24); 8277-8281, 2007

 

2006

1. Kai-lu Yu, Ji-jun Zou, Yu-heng Ben, Yue-ping Zhang, Chang-jun Liu, Synthesis of NiO-embedded carbon nanotubes using corona discharge enhanced chemical vapor deposition, Diamond and Related Materials,15, 1217-1222, 2006

 

2. Xinli Zhu, Kailu Yu, Yue-Ping Zhang, Qing Xia and Chang-jun Liu, Thermogravimetric Analysis of the Coke Formation on the Plasma Treated Mo-Fe/HZSM-5 Catalyst for Non-oxidative Aromatization of Methane, React. Kinet. Catal. Lett., 87(1), 93-99, 2006

 

3. Chang-jun Liu, Jijun Zou, Kailu Yu, Dangguo Cheng, You Han, Jason Zhan, Chalita Ratanatawanate and Ben W.-L. Jang, Plasma Application for More Environmentally-friendly Catalyst Preparation, Pure and Applied Chemistry, 78(6), 1227-1238, 2006

 

4. Jian-guo Wang and Chang-jun Liu, Density Functional Theory Study of Methane Activation over PdO/HZSM-5. Journal of Molecular Catalysis A: Chemical, 247(1/2), 199-205, 2006

 

5. Ji-Jun Zou, Chang-Jun Liu, and Yue-Ping Zhang, Control of the Metal-Support Interface of NiO-Loaded Photocatalysts via Cold Plasma Treatment, Langmuir, 22(5), 2334-2339, 2006

 

6. Dang-guo Cheng, Xinli Zhu, Yuheng Ben, Fei He, Lan Cui, and Chang-jun Liu, Carbon dioxide reforming of methane over Ni/Al2O3 treated with glow discharge plasma, Catalysis Today, 115(1-4), 205-210, 2006

 

7. You Han, Chang-jun Liu, Qingfeng Ge, Interaction of Pt Clusters with TiO2 Anatase (101) Surface: A First Principles Study, J. Phys. Chem. B, 110(14), 7463-7472, 2006

 

8. You Han, Jian-guo Wang, Dang-guo Cheng and Chang-jun Liu, Density Functional Theory Study of Methanol Conversion via Cold Plasmas, Ind. Eng. Chem. Res., 45(10), 3460-3467, 2006

 

9. Ji-Jun Zou and Chang-Jun Liu Yue-ping Zhang, Steam Reforming of Dimethyl Ether by AC Corona Discharge Plasma with Various Waveforms, Energy Fuels, 20 (4): 1674-1679, 2006

 

10. Xinli Zhu, Pei-pei Huo, Yue-ping Zhang and Chang-jun Liu. Characterization of Argon Glow Discharge Plasma Reduced Pt/Al2O3 Catalyst, Ind. Eng. Chem. Res. 45(25): 8604-8609, 2006

 

11. Ji-Jun Zou, Yue-ping Zhang, and Chang-Jun Liu, Reduction of Supported Noble Metal Ions Using Glow Discharge Plasma, Langmuir, 22(26),11388-11394,2006

 

2005

1. Yu Wang,Chang-jun Liu,Yue-ping Zhang, Plasma methane conversion in the presence of dimethyl ether using dielectric-barrier discharge, Energy Fuels, 19 (3): 877-881, 2005

 

2. Ji-jun Zou, Chao Chen, Chang-jun Liu, Yue-ping Zhang, You Han, Lan Cui, Pt nanoparticles on TiO2 with novel metal-semiconductor interface as highly efficient photocatalyst, Materials Letters, 59(27), 3437-3440, 2005  

 

2004

1. Jian-guo Wang, Chang-jun Liu, Zhiping Fang, Yue Liu and Zhongqi Han, A DFT Study of Structural and Electronic Properties of PdO/HZSM-5, J. Phys. Chem. B., 108(5), 1653-1659, 2004

 

2. Yue-ping Zhang, Pei-sheng Ma, Xinli Zhu, Chang-jun Liu and Yutian Shen, A Novel Plasma-treated Pt/NaZSM-5 Catalyst for NO reduction by methane, Catalysis Communications, 5, 35-39, 2004

 

3. Chang-jun Liu, Kailu Yu, Xinli Zhu, Yue-ping Zhang, Fei He and Baldur Eliasson, Characterization of Plasma Treated Pd/HZSM-5 Catalyst for Methane Combustion, Appl. Catal. B, 47(2), 95-100, 2004

 

4. Ji-Jun Zou, Chang-Jun Liu, Baldur Eliasson; Modification of Starch by Glow Discharge Plasma; Carbohydrate Polymers, 55(1), 23-26, 2004

 

5. Jian-guo Wang, Chang-jun Liu and Baldur Eliassion, DFT Study of Synthesis of oxygenates and higher hydrocarbons from methane and carbon dioxide using cold plasmas, Energy and Fuels, 18(1), 148-153, 2004  

 

6. Jian-guo Wang, Chang-jun Liu, Yue-ping Zhang, Kai-lu Yu, Xin-li Zhu and Fei He, Partial Oxidation of Methane to Syngas over Glow Discharge Plasma Treated Ni-Fe/Al2O3 Catalyst, Catal. Today, 89(1-2), 183-191, 2004

 

7. Ben Jang, Thomas Hammer and Chang-jun Liu, Editorial, Catal. Today, 89(1-2), 1-2, 2004  

 

8. Kai-lu Yu, Chang-jun Liu, Yue-ping Zhang, Fei He, Xin-li Zhu and Baldur Eliasson, The Preparation and Characterization of Highly Dispersed PdO over Alumina for Low-temperature Combustion of Methane, Plasma Chemistry Plasma Processing, 24(3), 393-403, 2004

 

9. Hui-qing Li, Ji-jun Zou, Yue-ping Zhang, and Chang-jun Liu, Novel Plasma Methanol Decomposition to Hydrogen Using Corona Discharges, Chemistry Letters, 33(6), 744-745, 2004

 

10. Chang-jun Liu, Thomas Hammer and Richard Mallinson, Editorial, Catal. Today, 98(4), vii-viii, 2004  

 

11. Ji-Jun Zou, Chang-Jun Liu, Kai-Lu Yu, Dang-guo Cheng, Yue-ping Zhang, Fei He, Hai-yan Du, Lan Cui, Highly efficient Pt/TiO2 photocatalyst prepared by plasma-enhanced impregnation method, Chemical Physics Letters, 400, 520-523, 2004

 

2003

1. Jian-guo Wang, Chang-jun Liu, Yue-ping Zhang, and Baldur Eliasson, A DFT study of synthesis of acetic acid from methane and carbon dioxide, Chemical Physics Letters, 368(3/4), 313-318, 2003

 

2. Ji-Jun Zou, Yue-ping Zhang, Chang-Jun Liu, Yang Li, and Baldur Eliasson, Starch Enhanced Synthesis of Oxygenates from Methane and Carbon Dioxide Using Dielectric-barrier Discharges, Plasma Chemistry Plasma Processing, 23(1), 69-82, 2003

 

3. Yue-ping Zhang, Yang Li, Chang-jun Liu, and Baldur Eliasson, Influence of Electrode Configuration on Direct Methane Conversion with CO2 as a Co-reactant Using Dielectric-barrier Discharges, ACS Symposium Series, 852, 100-115, 2003 

 

4. Yue-ping Zhang, Yang Li, Yu Wang, Chang-jun Liu, and Baldur Eliasson, Plasma methane conversion in the presence of carbon dioxide using dielectric-barrier discharges, Fuel Processing Technology, 83(1-3), 101-109, 2003 

 

5. Chang-jun Liu, Xin-bin Ma, Fei He, Kai-lu Yu, Shen Han, Qing Xia and G.P. Vissokov, Preparation of ultra-fine Al2O3 using plasma jet and its application for synthesis of dimethyl carbonate, Chemical Engineering Communications, 190(10), 1371-1378, 2003  

 

6. Chang-jun Liu, Kailu Yu, Yue-ping Zhang, Xinli Zhu, Fei He and Baldur Eliasson, Remarkable improvement in the activity and stability of Pd/HZSM-5 catalyst for methane combustion, Catalysis Communications, 4(7), 303-307, 2003  

 

7. Chang-jun Liu, Richard G. Mallinson and Michele Aresta, Preface of ACS Symposium Series 852: Utilization of Greenhouse Gases, Published by American Chemical Society, 2003

 

2002

1. Chang-jun Liu, Jia-xin Wang, Baldur Eliasson, Bingzhang Xue and Kai-lu Yu, Floating double probe method characteristics of non-thermal plasmas in the presence of zeolite, J. Electrostatics, 54(2), 149~158, 2002  

 

2.Yang Li, Chang-Jun Liu, Baldur Eliasson and Yu Wang, Synthesis of Oxygenates and Higher Hydrocarbons Directly from Methane and Carbon Dioxide Using Dielectric-Barrier Discharges: Product Distribution, Energy & Fuels, 16(4), 864-870, 2002

 

3. Tao Jiang, Yang Li, Chang-jun Liu, Gen-hui Xu, Baldur Eliasson and Bingzhang Xue, Plasma Methane Conversion Using Dielectric-barrier Discharges with Zeolite A, Catalysis Today, 72, 229~235, 2002

 

4. Chang-jun Liu, G.P. Vissokov and Ben Jang, On the plasma chemical-preparation of catalyst, Catalysis Today, 72(3/4),173~184, 2002

 

2001

1. Chang-jun Liu, Bingzhang Xue, Baldur Eliasson, Fei He, Yang Li and Gen-hui Xu, Methane conversion to higher hydrocarbons in the presence of carbon dioxide using dielectric-barrier discharge plasmas, Plasma Chemistry & Plasma Processing, 21(3), 301-310, 2001

 

2. Chang-jun Liu, Yang Li, Yue-ping Zhang, Yu Wang, Jijun Zou, Baldur Eliasson and Bingzhang Xue, Production of acetic acid directly from methane and carbon dioxide using dielectric-barrier discharges, Chem. Lett., No. 12, 1304~1305, 2001

 

3. Tao Jiang, Chang-jun Liu and Guo-liang Fan,Conversion of Dimethyl Ether to Diesel Fuel additives via Dielectric Barrier Discharges, Chemistry Letters, No.4, 322-323,2001

 

4. Tao Jiang, Chang-jun Liu, Ming-fa Rao, Chun-de Yao and Guo-liang Fan, A novel synthesis of diesel fuel additives from dimethyl ether using dielectric barrier discharges, Fuel Processing Technology, 73(2), 143-152, 2001

 

5. Yang Li, Gen-hui Xu, Chang-jun Liu, Baldur Eliasson and Bingzhang Xue, Co-generation of syngas and higher hydrocarbons from CO2 and CH4 using dielectric-barrier discharge: Effect of electrode materials, Energy & Fuels, 15(2), 299-302, 2001

 

2000

1. B. Eliasson, C.-J. Liu and U. Kogelschatz, Direct Conversion of Methane and Carbon Dioxide to Higher Hydrocarbons Using Catalytic Dielectric-Barrier Discharges with Zeolites, Ind. Eng. Chem. Res., 39(5), 1221-1227, 2000

 

2. Yue-ping Zhang, Chang-jun Liu and Min-hua Zhang, Carbon black and carbon nano-tubes produced from acetylene using non-thermal plasmas at atmospheric pressure, Chemistry Letters, No.10, pp. 1204~1205, 2000

 

1999

1. Liu, C.-J., R.G. Mallinson and L.L. Lobban; "Comparative Investigation on plasma catalytic methane conversion to higher hydrocarbons over Zeolites," Applied Catalysis, A., 178(1), 17-27,1999

 

2. Liu, C.-J., G.-H. Xu and T. Wang; “Non-thermal plasma approaches in CO2 utilization,” Fuel Processing Technology, 58(2/3), 119-134, 1999 1998 1.Liu, C.-J., R.G. Mallinson and L.L. Lobban; "Non-oxidative Methane Conversion to Acetylene over Zeolites in a Low-temperature Plasma," J. Catalysis, 179(1), 326-334,

 

1998

1. Liu, C.-J., R.G. Mallinson and L.L. Lobban; "Non-oxidative Methane Conversion to Acetylene over Zeolites in a Low-temperature Plasma," J. Catalysis, 179(1), 326-334, 1998

 

1997

1. Liu, C.-J., A. Marafee, R.G. Mallinson and L.L. Lobban; “Methane conversion to higher hydrocarbons over charged metal oxide catalysts with OH groups,” Applied Catalysis A, 164, 21-33, 1997  

 

2. Marafee, A., C.-J. Liu, G.-H. Xu, R.G. Mallinson and L.L. Lobban; “An experimental study on the oxidative coupling of methane in a dc corona discharge reactor over Sr/La2O3,” Ind. Eng. Chem. Res., 36(3), 632-637, 1997

 

1996

1. Liu, C.-J., A. Marafee, G.-H. Xu, R.G. Mallinson and L.L. Lobban; “The oxidative coupling of methane with ac and dc corona discharge,” Ind. Eng. Chem. Res., 35(10), 3295- 3301, 1996  

 

2. Liu, C.-J.; “The oxidative synthesis of higher hydrocarbons from CH4 and CO2 by streamer discharge,” Chemistry Letters, 25, 749-750, 1996

 

3. Liu, C.-J. and Chen, H.-F., “Visualization and numerical prediction of double diffusive convection characteristics in a static crystallizer”, Int. Comm. with Heat & Mass Transfer, 23(4), 543- 553, 1996